Skip to content

DataRegistration Class

Register qi2lab 3D MERFISH data using cross-correlation and optical flow.

This module enables the registration of MERFISH datasets by utilizing cross-correlation and optical flow techniques.

History:
  • 2024/12: Refactor repo structure.
  • 2024/08:
    • Switched to qi2labdatastore for data access.
    • Implemented numba-accelerated downsampling.
    • Cleaned numpy usage for ryomen tiling.
  • 2024/07: Integrated pycudadecon and removed Dask usage.
  • 2024/04: Updated for U-FISH, removed SPOTS3D.
  • 2024/01: Adjusted for qi2lab MERFISH file format v0.1.
  • 2023/09: Initial commit.

Classes:

Name Description
DataRegistration

Register 2D or 3D MERFISH data across rounds.

DataRegistration

Register 2D or 3D MERFISH data across rounds.

Parameters:

Name Type Description Default
datastore qi2labDataStore

Initialized qi2labDataStore object

required
overwrite_registered bool

Overwrite existing registered data and registrations

False
perform_optical_flow bool

Perform optical flow registration

False
save_all_polyDT_registered bool

Save fidicual polyDT rounds > 1. These are not used for analysis.

True
decon_iters Optional[int]

Deconvolution iterations

10
decon_background Optional[float]

Background to substract during deconvolution

50.0

Methods:

Name Description
dataset_path

Set the qi2labDataStore object.

register_all_tiles

Helper function to register all tiles.

register_one_tile

Helper function to register one tile.

Attributes:

Name Type Description
datastore

Return the qi2labDataStore object.

overwrite_registered

Get the overwrite_registered flag.

perform_optical_flow

Get the perform_optical_flow flag.

tile_id

Get the current tile id.

Source code in src/merfish3danalysis/DataRegistration.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
class DataRegistration:
    """Register 2D or 3D MERFISH data across rounds.

    Parameters
    ----------
    datastore : qi2labDataStore
        Initialized qi2labDataStore object
    overwrite_registered: bool, default False
        Overwrite existing registered data and registrations
    perform_optical_flow: bool, default False
        Perform optical flow registration
    save_all_polyDT_registered: bool, default True
        Save fidicual polyDT rounds > 1. These are not used for analysis. 
    decon_iters : Optional[int], default 10
        Deconvolution iterations
    decon_background: Optional[float], default 50.0
        Background to substract during deconvolution
    """

    def __init__(
        self,
        datastore: qi2labDataStore,
        overwrite_registered: bool = False,
        perform_optical_flow: bool = False,
        save_all_polyDT_registered: bool = True,
        decon_iters: Optional[int] = 10,
        decon_background: Optional[float] = 50.0,
    ):

        self._datastore = datastore
        self._tile_ids = self._datastore.tile_ids
        self._round_ids = self._datastore.round_ids
        self._bit_ids = self._datastore.bit_ids
        self._psfs = self._datastore.channel_psfs

        self._perform_optical_flow = perform_optical_flow
        self._data_raw = None
        self._has_registered_data = None
        self._overwrite_registered = overwrite_registered
        self.save_all_polyDT_registered = save_all_polyDT_registered
        self._decon_iters = decon_iters
        self._decon_background = decon_background
        self._original_print = builtins.print

    # -----------------------------------
    # property access for class variables
    # -----------------------------------
    @property
    def datastore(self):
        """Return the qi2labDataStore object.

        Returns
        -------
        qi2labDataStore
            qi2labDataStore object
        """

        if self._dataset_path is not None:
            return self._datastore
        else:
            print("Datastore not defined.")
            return None

    @datastore.setter
    def dataset_path(self, value: qi2labDataStore):
        """Set the qi2labDataStore object.

        Parameters
        ----------
        value : qi2labDataStore
            qi2labDataStore object
        """

        del self._datastore
        self._datastore = value

    @property
    def tile_id(self):
        """Get the current tile id.

        Returns
        -------
        tile_id: Union[int,str]
            Tile id
        """

        if self._tile_id is not None:
            tile_id = self._tile_id
            return tile_id
        else:
            print("Tile coordinate not defined.")
            return None

    @tile_id.setter
    def tile_id(self, value: Union[int,str]):
        """Set the tile id.

        Parameters
        ----------
        value : Union[int,str]
            Tile id
        """

        if isinstance(value, int):
            if value < 0 or value > self._datastore.num_tiles:
                print("Set value index >=0 and <=" + str(self._datastore.num_tiles))
                return None
            else:
                self._tile_id = self._datastore.tile_ids[value]
        elif isinstance(value, str):
            if value not in self._datastore.tile_ids:
                print("set valid tile id")
                return None
            else:
                self._tile_id = value

    @property
    def perform_optical_flow(self):
        """Get the perform_optical_flow flag.

        Returns
        -------
        perform_optical_flow: bool
            Perform optical flow registration
        """

        return self._perform_optical_flow

    @perform_optical_flow.setter
    def perform_optical_flow(self, value: bool):
        """Set the perform_optical_flow flag.

        Parameters
        ----------
        value : bool
            Perform optical flow registration
        """

        self._perform_optical_flow = value

    @property
    def overwrite_registered(self):
        """Get the overwrite_registered flag.

        Returns
        -------
        overwrite_registered: bool
            Overwrite existing registered data and registrations
        """

        return self._overwrite_registered

    @overwrite_registered.setter
    def overwrite_registered(self, value: bool):
        """Set the overwrite_registered flag.

        Parameters
        ----------
        value : bool
            Overwrite existing registered data and registrations
        """

        self._overwrite_registered = value

    def register_all_tiles(self):
        """Helper function to register all tiles."""
        for tile_id in tqdm(self._datastore.tile_ids,desc="tiles"):
            self.tile_id=tile_id
            self._load_raw_data()
            self._generate_registrations()
            self._apply_registration_to_bits()

    def register_one_tile(self, tile_id: Union[int,str]):
        """Helper function to register one tile.

        Parameters
        ----------
        tile_id : Union[int,str]
            Tile id
        """

        self.tile_id = tile_id
        self._load_raw_data()
        self._generate_registrations()
        self._apply_registration_to_bits()

    def _load_raw_data(self):
        """Load raw data across rounds for one tile."""

        self._data_raw = []
        stage_positions = []

        for round_id in self._round_ids:
            self._data_raw.append(
                self._datastore.load_local_corrected_image(
                tile=self._tile_id,
                round=round_id,
                )
            )

            stage_positions.append(
                self._datastore.load_local_stage_position_zyx_um(
                    tile=self._tile_id,
                    round=round_id
                )
            )

        self._stage_positions = np.stack(stage_positions, axis=0)
        del stage_positions
        gc.collect()

    def _generate_registrations(self):
        """Generate registered, deconvolved fiducial data and save to datastore."""

        test =  self._datastore.load_local_registered_image(
            tile=self._tile_id,
            round=self._round_ids[0]
        )

        if test is None:
            has_reg_decon_data = False
        else:
            has_reg_decon_data = True

        if not (has_reg_decon_data) or self._overwrite_registered:

            ref_image_decon = chunked_cudadecon(
                image=np.asarray(self._data_raw[0].result(),dtype=np.uint16),
                psf=self._psfs[0, :],
                image_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
                psf_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
                wavelength_um=self._datastore.load_local_wavelengths_um(
                    tile=self._tile_id,
                    round=self._round_ids[0])[1],
                na=self._datastore.na,
                ri=self._datastore.ri,
                n_iters=self._decon_iters,
                background=self._decon_background,
            )

            self._datastore.save_local_registered_image(
                ref_image_decon,
                tile=self._tile_id,
                deconvolution=True,
                round=self._round_ids[0]
            )

        for r_idx, round_id in enumerate(tqdm(self._round_ids[1:],desc="rounds")):

            test =  self._datastore.load_local_registered_image(
                tile=self._tile_id,
                round=round_id
            )
            if test is None:
                has_reg_decon_data = False
            else:
                has_reg_decon_data = True

            if not (has_reg_decon_data) or self._overwrite_registered:
                try:
                    temp = ref_image_decon[0:1,0:1,0:1].astype(np.float32)
                    del temp
                    gc.collect()
                except FileNotFoundError :
                    ref_image_decon = self._datastore.load_local_registered_image(
                        tile=self._tile_id,
                        round=self._round_ids[0],
                        return_future=False
                    )


                mov_image_decon = chunked_cudadecon(
                    image=np.asarray(
                        self._data_raw[r_idx].result(),dtype=np.uint16
                    ),
                    psf=self._psfs[0, :],
                    image_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
                    psf_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
                    wavelength_um=float(self._datastore.load_local_wavelengths_um(
                        tile=self._tile_id,
                        round=self._round_ids[0])[1]
                    ),
                    na=self._datastore.na,
                    ri=self._datastore.ri,
                    n_iters=self._decon_iters,
                    background=self._decon_background,
                )

                downsample_factor = 2
                if downsample_factor > 1:
                    ref_image_decon_ds = downsample_image_isotropic(
                        ref_image_decon, downsample_factor
                    )
                    mov_image_decon_ds = downsample_image_isotropic(
                        mov_image_decon, downsample_factor
                    )
                else:
                    ref_image_decon_ds = ref_image_decon.copy()
                    mov_image_decon_ds = mov_image_decon.copy()

                _, initial_xy_shift = compute_rigid_transform(
                    ref_image_decon_ds,
                    mov_image_decon_ds,
                    use_mask=True,
                    downsample_factor=downsample_factor,
                    projection="z",
                )

                intial_xy_transform = sitk.TranslationTransform(3, initial_xy_shift)

                mov_image_decon = apply_transform(
                    ref_image_decon, mov_image_decon, intial_xy_transform
                )

                downsample_factor = 2
                if downsample_factor > 1:
                    ref_image_decon_ds = downsample_image_isotropic(
                        ref_image_decon, downsample_factor
                    )
                    mov_image_decon_ds = downsample_image_isotropic(
                        mov_image_decon, downsample_factor
                    )
                else:
                    ref_image_decon_ds = ref_image_decon.copy()
                    mov_image_decon_ds = mov_image_decon.copy()

                _, intial_z_shift = compute_rigid_transform(
                    ref_image_decon_ds,
                    mov_image_decon_ds,
                    use_mask=False,
                    downsample_factor=downsample_factor,
                    projection="search",
                )

                intial_z_transform = sitk.TranslationTransform(3, intial_z_shift)

                mov_image_decon = apply_transform(
                    ref_image_decon, mov_image_decon, intial_z_transform
                )

                downsample_factor = 4
                if downsample_factor > 1:
                    ref_image_decon_ds = downsample_image_isotropic(
                        ref_image_decon, downsample_factor
                    )
                    mov_image_decon_ds = downsample_image_isotropic(
                        mov_image_decon, downsample_factor
                    )
                else:
                    ref_image_decon_ds = ref_image_decon.copy()
                    mov_image_decon_ds = mov_image_decon.copy()

                _, xyz_shift_4x = compute_rigid_transform(
                    ref_image_decon_ds,
                    mov_image_decon_ds,
                    use_mask=True,
                    downsample_factor=downsample_factor,
                    projection=None,
                )

                final_xyz_shift = (
                    np.asarray(initial_xy_shift)
                    + np.asarray(intial_z_shift)
                    + np.asarray(xyz_shift_4x)
                )
                # final_xyz_shift = np.asarray(xyz_shift_4x)
                self._datastore.save_local_rigid_xform_xyz_px(
                    rigid_xform_xyz_px=final_xyz_shift,
                    tile=self._tile_id,
                    round=round_id
                )

                xyz_transform_4x = sitk.TranslationTransform(3, xyz_shift_4x)
                mov_image_decon = apply_transform(
                    ref_image_decon, mov_image_decon, xyz_transform_4x
                )

                if self._perform_optical_flow:
                    downsample_factor = 3
                    if downsample_factor > 1:
                        ref_image_decon_ds = downsample_image_isotropic(
                            ref_image_decon, downsample_factor
                        )
                        mov_image_decon_ds = downsample_image_isotropic(
                            mov_image_decon, downsample_factor
                        )

                    of_xform_px = compute_optical_flow(
                        ref_image_decon_ds, 
                        mov_image_decon_ds
                    )

                    self._datastore.save_coord_of_xform_px(
                        of_xform_px=of_xform_px,
                        tile=self._tile_id,
                        downsampling=[
                            float(downsample_factor),
                            float(downsample_factor),
                            float(downsample_factor)],
                        round=round_id
                    )

                    of_xform_sitk = sitk.GetImageFromArray(
                        of_xform_px.transpose(1, 2, 3, 0).astype(np.float64),
                        isVector=True,
                    )
                    interpolator = sitk.sitkLinear
                    identity_transform = sitk.Transform(3, sitk.sitkIdentity)
                    optical_flow_sitk = sitk.Resample(
                        of_xform_sitk,
                        sitk.GetImageFromArray(mov_image_decon),
                        identity_transform,
                        interpolator,
                        0,
                        of_xform_sitk.GetPixelID(),
                    )
                    displacement_field = sitk.DisplacementFieldTransform(
                        optical_flow_sitk
                    )
                    del optical_flow_sitk, of_xform_px
                    gc.collect()

                    # apply optical flow
                    mov_image_sitk = sitk.Resample(
                        sitk.GetImageFromArray(mov_image_decon), 
                        displacement_field
                    )

                    data_registered = sitk.GetArrayFromImage(
                        mov_image_sitk
                    ).astype(np.float32)
                    data_registered[data_registered < 0.0] = 0
                    data_registered = data_registered.astype(np.uint16)

                    del mov_image_sitk, displacement_field
                    gc.collect()
                else:
                    mov_image_decon[mov_image_decon < 0.0] = 0
                    data_registered = mov_image_decon.astype(np.uint16)

                if self.save_all_polyDT_registered:
                    self._datastore.save_local_registered_image(
                        registered_image=data_registered.astype(np.uint16),
                        tile=self._tile_id,
                        deconvolution=True,
                        round=round_id
                    )

                del data_registered
                gc.collect()

    def _apply_registration_to_bits(self):
        """Generate ufish + deconvolved, registered readout data and save to datastore."""

        for bit_idx, bit_id in enumerate(tqdm(self._bit_ids,desc='bits')):

            r_idx = self._datastore.load_local_round_linker(
                tile=self._tile_id,
                bit=bit_id
            )
            r_idx = r_idx - 1
            ex_wavelength_um, em_wavelength_um = self._datastore.load_local_wavelengths_um(
                tile=self._tile_id,
                bit=bit_id
            )

            # TO DO: hacky fix. Need to come up with a better way.
            if ex_wavelength_um < 600:
                psf_idx = 1
            else:
                psf_idx = 2

            test = self._datastore.load_local_registered_image(
                tile=self._tile_id,
                bit=bit_id
            )

            if test is None:
                reg_decon_data_on_disk = False
            else:
                reg_decon_data_on_disk = True


            if (not (reg_decon_data_on_disk) or self._overwrite_registered):

                corrected_image = self._datastore.load_local_corrected_image(
                    tile=self._tile_id,
                    bit=bit_id,
                    return_future=False,
                )

                decon_image = chunked_cudadecon(
                    image=corrected_image,
                    psf=self._psfs[psf_idx, :],
                    image_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
                    psf_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
                    wavelength_um=em_wavelength_um,
                    na=self._datastore.na,
                    ri=self._datastore.ri,
                    n_iters=self._decon_iters,
                    background=self._decon_background,
                )


                if r_idx > 0:
                    rigid_xform_xyz_um = self._datastore.load_local_rigid_xform_xyz_px(
                        tile=self._tile_id,
                        round=self._round_ids[r_idx],
                    )
                    shift_xyz = [float(i) for i in rigid_xform_xyz_um]
                    xyz_transform = sitk.TranslationTransform(3, shift_xyz)

                    if self._perform_optical_flow:

                        of_xform_px, _ = self._datastore.load_coord_of_xform_px(
                            tile=self._tile_id,
                            round=self._round_ids[r_idx],
                            return_future=False
                        )

                        of_xform_sitk = sitk.GetImageFromArray(
                            of_xform_px.transpose(1, 2, 3, 0).astype(np.float64),
                            isVector=True,
                        )

                        interpolator = sitk.sitkLinear
                        identity_transform = sitk.Transform(3, sitk.sitkIdentity)

                        optical_flow_sitk = sitk.Resample(
                            of_xform_sitk,
                            sitk.GetImageFromArray(decon_image),
                            identity_transform,
                            interpolator,
                            0,
                            of_xform_sitk.GetPixelID(),
                        )
                        displacement_field = sitk.DisplacementFieldTransform(
                            optical_flow_sitk
                        )
                        del optical_flow_sitk, of_xform_px
                        gc.collect()

                    decon_image_rigid = apply_transform(
                        decon_image, 
                        decon_image, 
                        xyz_transform
                    )
                    del decon_image

                    if self._perform_optical_flow:
                        decon_bit_image_sitk = sitk.Resample(
                            sitk.GetImageFromArray(decon_image_rigid), 
                            displacement_field
                        )
                        del displacement_field

                        data_decon_registered = sitk.GetArrayFromImage(
                            decon_bit_image_sitk
                        ).astype(np.float32)
                        del decon_bit_image_sitk
                    else:
                        data_decon_registered = decon_image_rigid.copy()
                        del decon_image_rigid
                    gc.collect()

                else:
                    data_decon_registered = decon_image.copy()
                    del decon_image
                    gc.collect()

                data_decon_registered[data_decon_registered<0.]=0.0

                builtins.print = _no_op
                ufish = UFish(device="cuda")
                ufish.load_weights_from_internet()

                ufish_localization, ufish_data = ufish.predict(
                    data_decon_registered, axes="zyx", blend_3d=False, batch_size=8
                )
                builtins.print = self._original_print

                ufish_localization = ufish_localization.rename(columns={"axis-0": "z"})
                ufish_localization = ufish_localization.rename(columns={"axis-1": "y"})
                ufish_localization = ufish_localization.rename(columns={"axis-2": "x"})

                del ufish
                gc.collect()

                torch.cuda.empty_cache()
                cp.get_default_memory_pool().free_all_blocks()
                gc.collect()

                roi_z, roi_y, roi_x = 7, 5, 5

                def sum_pixels_in_roi(row, image, roi_dims):
                    z, y, x = row["z"], row["y"], row["x"]
                    roi_z, roi_y, roi_x = roi_dims
                    z_min, y_min, x_min = (
                        max(0, z - roi_z // 2),
                        max(0, y - roi_y // 2),
                        max(0, x - roi_x // 2),
                    )
                    z_max, y_max, x_max = (
                        min(image.shape[0], z_min + roi_z),
                        min(image.shape[1], y_min + roi_y),
                        min(image.shape[2], x_min + roi_x),
                    )
                    roi = image[
                        int(z_min) : int(z_max),
                        int(y_min) : int(y_max),
                        int(x_min) : int(x_max),
                    ]
                    return np.sum(roi)

                ufish_localization["sum_prob_pixels"] = ufish_localization.apply(
                    sum_pixels_in_roi,
                    axis=1,
                    image=ufish_data,
                    roi_dims=(roi_z, roi_y, roi_x),
                )
                ufish_localization["sum_decon_pixels"] = ufish_localization.apply(
                    sum_pixels_in_roi,
                    axis=1,
                    image=data_decon_registered,
                    roi_dims=(roi_z, roi_y, roi_x),
                )

                ufish_localization["tile_idx"] = self._tile_ids.index(self._tile_id)
                ufish_localization["bit_idx"] = bit_idx + 1
                ufish_localization["tile_z_px"] = ufish_localization["z"]
                ufish_localization["tile_y_px"] = ufish_localization["y"]
                ufish_localization["tile_x_px"] = ufish_localization["x"]

                self._datastore.save_local_registered_image(
                    data_decon_registered.astype(np.uint16),
                    tile=self._tile_id,
                    deconvolution=True,
                    bit=bit_id
                )
                self._datastore.save_local_ufish_image(
                    ufish_data,
                    tile=self._tile_id,
                    bit=bit_id
                )
                self._datastore.save_local_ufish_spots(
                    ufish_localization,
                    tile=self._tile_id,
                    bit=bit_id
                )

                del (
                    data_decon_registered,
                    ufish_data,
                    ufish_localization,
                )
                gc.collect()

datastore property

Return the qi2labDataStore object.

Returns:

Type Description
qi2labDataStore

qi2labDataStore object

overwrite_registered property writable

Get the overwrite_registered flag.

Returns:

Name Type Description
overwrite_registered bool

Overwrite existing registered data and registrations

perform_optical_flow property writable

Get the perform_optical_flow flag.

Returns:

Name Type Description
perform_optical_flow bool

Perform optical flow registration

tile_id property writable

Get the current tile id.

Returns:

Name Type Description
tile_id Union[int, str]

Tile id

_apply_registration_to_bits()

Generate ufish + deconvolved, registered readout data and save to datastore.

Source code in src/merfish3danalysis/DataRegistration.py
def _apply_registration_to_bits(self):
    """Generate ufish + deconvolved, registered readout data and save to datastore."""

    for bit_idx, bit_id in enumerate(tqdm(self._bit_ids,desc='bits')):

        r_idx = self._datastore.load_local_round_linker(
            tile=self._tile_id,
            bit=bit_id
        )
        r_idx = r_idx - 1
        ex_wavelength_um, em_wavelength_um = self._datastore.load_local_wavelengths_um(
            tile=self._tile_id,
            bit=bit_id
        )

        # TO DO: hacky fix. Need to come up with a better way.
        if ex_wavelength_um < 600:
            psf_idx = 1
        else:
            psf_idx = 2

        test = self._datastore.load_local_registered_image(
            tile=self._tile_id,
            bit=bit_id
        )

        if test is None:
            reg_decon_data_on_disk = False
        else:
            reg_decon_data_on_disk = True


        if (not (reg_decon_data_on_disk) or self._overwrite_registered):

            corrected_image = self._datastore.load_local_corrected_image(
                tile=self._tile_id,
                bit=bit_id,
                return_future=False,
            )

            decon_image = chunked_cudadecon(
                image=corrected_image,
                psf=self._psfs[psf_idx, :],
                image_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
                psf_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
                wavelength_um=em_wavelength_um,
                na=self._datastore.na,
                ri=self._datastore.ri,
                n_iters=self._decon_iters,
                background=self._decon_background,
            )


            if r_idx > 0:
                rigid_xform_xyz_um = self._datastore.load_local_rigid_xform_xyz_px(
                    tile=self._tile_id,
                    round=self._round_ids[r_idx],
                )
                shift_xyz = [float(i) for i in rigid_xform_xyz_um]
                xyz_transform = sitk.TranslationTransform(3, shift_xyz)

                if self._perform_optical_flow:

                    of_xform_px, _ = self._datastore.load_coord_of_xform_px(
                        tile=self._tile_id,
                        round=self._round_ids[r_idx],
                        return_future=False
                    )

                    of_xform_sitk = sitk.GetImageFromArray(
                        of_xform_px.transpose(1, 2, 3, 0).astype(np.float64),
                        isVector=True,
                    )

                    interpolator = sitk.sitkLinear
                    identity_transform = sitk.Transform(3, sitk.sitkIdentity)

                    optical_flow_sitk = sitk.Resample(
                        of_xform_sitk,
                        sitk.GetImageFromArray(decon_image),
                        identity_transform,
                        interpolator,
                        0,
                        of_xform_sitk.GetPixelID(),
                    )
                    displacement_field = sitk.DisplacementFieldTransform(
                        optical_flow_sitk
                    )
                    del optical_flow_sitk, of_xform_px
                    gc.collect()

                decon_image_rigid = apply_transform(
                    decon_image, 
                    decon_image, 
                    xyz_transform
                )
                del decon_image

                if self._perform_optical_flow:
                    decon_bit_image_sitk = sitk.Resample(
                        sitk.GetImageFromArray(decon_image_rigid), 
                        displacement_field
                    )
                    del displacement_field

                    data_decon_registered = sitk.GetArrayFromImage(
                        decon_bit_image_sitk
                    ).astype(np.float32)
                    del decon_bit_image_sitk
                else:
                    data_decon_registered = decon_image_rigid.copy()
                    del decon_image_rigid
                gc.collect()

            else:
                data_decon_registered = decon_image.copy()
                del decon_image
                gc.collect()

            data_decon_registered[data_decon_registered<0.]=0.0

            builtins.print = _no_op
            ufish = UFish(device="cuda")
            ufish.load_weights_from_internet()

            ufish_localization, ufish_data = ufish.predict(
                data_decon_registered, axes="zyx", blend_3d=False, batch_size=8
            )
            builtins.print = self._original_print

            ufish_localization = ufish_localization.rename(columns={"axis-0": "z"})
            ufish_localization = ufish_localization.rename(columns={"axis-1": "y"})
            ufish_localization = ufish_localization.rename(columns={"axis-2": "x"})

            del ufish
            gc.collect()

            torch.cuda.empty_cache()
            cp.get_default_memory_pool().free_all_blocks()
            gc.collect()

            roi_z, roi_y, roi_x = 7, 5, 5

            def sum_pixels_in_roi(row, image, roi_dims):
                z, y, x = row["z"], row["y"], row["x"]
                roi_z, roi_y, roi_x = roi_dims
                z_min, y_min, x_min = (
                    max(0, z - roi_z // 2),
                    max(0, y - roi_y // 2),
                    max(0, x - roi_x // 2),
                )
                z_max, y_max, x_max = (
                    min(image.shape[0], z_min + roi_z),
                    min(image.shape[1], y_min + roi_y),
                    min(image.shape[2], x_min + roi_x),
                )
                roi = image[
                    int(z_min) : int(z_max),
                    int(y_min) : int(y_max),
                    int(x_min) : int(x_max),
                ]
                return np.sum(roi)

            ufish_localization["sum_prob_pixels"] = ufish_localization.apply(
                sum_pixels_in_roi,
                axis=1,
                image=ufish_data,
                roi_dims=(roi_z, roi_y, roi_x),
            )
            ufish_localization["sum_decon_pixels"] = ufish_localization.apply(
                sum_pixels_in_roi,
                axis=1,
                image=data_decon_registered,
                roi_dims=(roi_z, roi_y, roi_x),
            )

            ufish_localization["tile_idx"] = self._tile_ids.index(self._tile_id)
            ufish_localization["bit_idx"] = bit_idx + 1
            ufish_localization["tile_z_px"] = ufish_localization["z"]
            ufish_localization["tile_y_px"] = ufish_localization["y"]
            ufish_localization["tile_x_px"] = ufish_localization["x"]

            self._datastore.save_local_registered_image(
                data_decon_registered.astype(np.uint16),
                tile=self._tile_id,
                deconvolution=True,
                bit=bit_id
            )
            self._datastore.save_local_ufish_image(
                ufish_data,
                tile=self._tile_id,
                bit=bit_id
            )
            self._datastore.save_local_ufish_spots(
                ufish_localization,
                tile=self._tile_id,
                bit=bit_id
            )

            del (
                data_decon_registered,
                ufish_data,
                ufish_localization,
            )
            gc.collect()

_generate_registrations()

Generate registered, deconvolved fiducial data and save to datastore.

Source code in src/merfish3danalysis/DataRegistration.py
def _generate_registrations(self):
    """Generate registered, deconvolved fiducial data and save to datastore."""

    test =  self._datastore.load_local_registered_image(
        tile=self._tile_id,
        round=self._round_ids[0]
    )

    if test is None:
        has_reg_decon_data = False
    else:
        has_reg_decon_data = True

    if not (has_reg_decon_data) or self._overwrite_registered:

        ref_image_decon = chunked_cudadecon(
            image=np.asarray(self._data_raw[0].result(),dtype=np.uint16),
            psf=self._psfs[0, :],
            image_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
            psf_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
            wavelength_um=self._datastore.load_local_wavelengths_um(
                tile=self._tile_id,
                round=self._round_ids[0])[1],
            na=self._datastore.na,
            ri=self._datastore.ri,
            n_iters=self._decon_iters,
            background=self._decon_background,
        )

        self._datastore.save_local_registered_image(
            ref_image_decon,
            tile=self._tile_id,
            deconvolution=True,
            round=self._round_ids[0]
        )

    for r_idx, round_id in enumerate(tqdm(self._round_ids[1:],desc="rounds")):

        test =  self._datastore.load_local_registered_image(
            tile=self._tile_id,
            round=round_id
        )
        if test is None:
            has_reg_decon_data = False
        else:
            has_reg_decon_data = True

        if not (has_reg_decon_data) or self._overwrite_registered:
            try:
                temp = ref_image_decon[0:1,0:1,0:1].astype(np.float32)
                del temp
                gc.collect()
            except FileNotFoundError :
                ref_image_decon = self._datastore.load_local_registered_image(
                    tile=self._tile_id,
                    round=self._round_ids[0],
                    return_future=False
                )


            mov_image_decon = chunked_cudadecon(
                image=np.asarray(
                    self._data_raw[r_idx].result(),dtype=np.uint16
                ),
                psf=self._psfs[0, :],
                image_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
                psf_voxel_zyx_um=self._datastore.voxel_size_zyx_um,
                wavelength_um=float(self._datastore.load_local_wavelengths_um(
                    tile=self._tile_id,
                    round=self._round_ids[0])[1]
                ),
                na=self._datastore.na,
                ri=self._datastore.ri,
                n_iters=self._decon_iters,
                background=self._decon_background,
            )

            downsample_factor = 2
            if downsample_factor > 1:
                ref_image_decon_ds = downsample_image_isotropic(
                    ref_image_decon, downsample_factor
                )
                mov_image_decon_ds = downsample_image_isotropic(
                    mov_image_decon, downsample_factor
                )
            else:
                ref_image_decon_ds = ref_image_decon.copy()
                mov_image_decon_ds = mov_image_decon.copy()

            _, initial_xy_shift = compute_rigid_transform(
                ref_image_decon_ds,
                mov_image_decon_ds,
                use_mask=True,
                downsample_factor=downsample_factor,
                projection="z",
            )

            intial_xy_transform = sitk.TranslationTransform(3, initial_xy_shift)

            mov_image_decon = apply_transform(
                ref_image_decon, mov_image_decon, intial_xy_transform
            )

            downsample_factor = 2
            if downsample_factor > 1:
                ref_image_decon_ds = downsample_image_isotropic(
                    ref_image_decon, downsample_factor
                )
                mov_image_decon_ds = downsample_image_isotropic(
                    mov_image_decon, downsample_factor
                )
            else:
                ref_image_decon_ds = ref_image_decon.copy()
                mov_image_decon_ds = mov_image_decon.copy()

            _, intial_z_shift = compute_rigid_transform(
                ref_image_decon_ds,
                mov_image_decon_ds,
                use_mask=False,
                downsample_factor=downsample_factor,
                projection="search",
            )

            intial_z_transform = sitk.TranslationTransform(3, intial_z_shift)

            mov_image_decon = apply_transform(
                ref_image_decon, mov_image_decon, intial_z_transform
            )

            downsample_factor = 4
            if downsample_factor > 1:
                ref_image_decon_ds = downsample_image_isotropic(
                    ref_image_decon, downsample_factor
                )
                mov_image_decon_ds = downsample_image_isotropic(
                    mov_image_decon, downsample_factor
                )
            else:
                ref_image_decon_ds = ref_image_decon.copy()
                mov_image_decon_ds = mov_image_decon.copy()

            _, xyz_shift_4x = compute_rigid_transform(
                ref_image_decon_ds,
                mov_image_decon_ds,
                use_mask=True,
                downsample_factor=downsample_factor,
                projection=None,
            )

            final_xyz_shift = (
                np.asarray(initial_xy_shift)
                + np.asarray(intial_z_shift)
                + np.asarray(xyz_shift_4x)
            )
            # final_xyz_shift = np.asarray(xyz_shift_4x)
            self._datastore.save_local_rigid_xform_xyz_px(
                rigid_xform_xyz_px=final_xyz_shift,
                tile=self._tile_id,
                round=round_id
            )

            xyz_transform_4x = sitk.TranslationTransform(3, xyz_shift_4x)
            mov_image_decon = apply_transform(
                ref_image_decon, mov_image_decon, xyz_transform_4x
            )

            if self._perform_optical_flow:
                downsample_factor = 3
                if downsample_factor > 1:
                    ref_image_decon_ds = downsample_image_isotropic(
                        ref_image_decon, downsample_factor
                    )
                    mov_image_decon_ds = downsample_image_isotropic(
                        mov_image_decon, downsample_factor
                    )

                of_xform_px = compute_optical_flow(
                    ref_image_decon_ds, 
                    mov_image_decon_ds
                )

                self._datastore.save_coord_of_xform_px(
                    of_xform_px=of_xform_px,
                    tile=self._tile_id,
                    downsampling=[
                        float(downsample_factor),
                        float(downsample_factor),
                        float(downsample_factor)],
                    round=round_id
                )

                of_xform_sitk = sitk.GetImageFromArray(
                    of_xform_px.transpose(1, 2, 3, 0).astype(np.float64),
                    isVector=True,
                )
                interpolator = sitk.sitkLinear
                identity_transform = sitk.Transform(3, sitk.sitkIdentity)
                optical_flow_sitk = sitk.Resample(
                    of_xform_sitk,
                    sitk.GetImageFromArray(mov_image_decon),
                    identity_transform,
                    interpolator,
                    0,
                    of_xform_sitk.GetPixelID(),
                )
                displacement_field = sitk.DisplacementFieldTransform(
                    optical_flow_sitk
                )
                del optical_flow_sitk, of_xform_px
                gc.collect()

                # apply optical flow
                mov_image_sitk = sitk.Resample(
                    sitk.GetImageFromArray(mov_image_decon), 
                    displacement_field
                )

                data_registered = sitk.GetArrayFromImage(
                    mov_image_sitk
                ).astype(np.float32)
                data_registered[data_registered < 0.0] = 0
                data_registered = data_registered.astype(np.uint16)

                del mov_image_sitk, displacement_field
                gc.collect()
            else:
                mov_image_decon[mov_image_decon < 0.0] = 0
                data_registered = mov_image_decon.astype(np.uint16)

            if self.save_all_polyDT_registered:
                self._datastore.save_local_registered_image(
                    registered_image=data_registered.astype(np.uint16),
                    tile=self._tile_id,
                    deconvolution=True,
                    round=round_id
                )

            del data_registered
            gc.collect()

_load_raw_data()

Load raw data across rounds for one tile.

Source code in src/merfish3danalysis/DataRegistration.py
def _load_raw_data(self):
    """Load raw data across rounds for one tile."""

    self._data_raw = []
    stage_positions = []

    for round_id in self._round_ids:
        self._data_raw.append(
            self._datastore.load_local_corrected_image(
            tile=self._tile_id,
            round=round_id,
            )
        )

        stage_positions.append(
            self._datastore.load_local_stage_position_zyx_um(
                tile=self._tile_id,
                round=round_id
            )
        )

    self._stage_positions = np.stack(stage_positions, axis=0)
    del stage_positions
    gc.collect()

dataset_path(value)

Set the qi2labDataStore object.

Parameters:

Name Type Description Default
value qi2labDataStore

qi2labDataStore object

required
Source code in src/merfish3danalysis/DataRegistration.py
@datastore.setter
def dataset_path(self, value: qi2labDataStore):
    """Set the qi2labDataStore object.

    Parameters
    ----------
    value : qi2labDataStore
        qi2labDataStore object
    """

    del self._datastore
    self._datastore = value

register_all_tiles()

Helper function to register all tiles.

Source code in src/merfish3danalysis/DataRegistration.py
def register_all_tiles(self):
    """Helper function to register all tiles."""
    for tile_id in tqdm(self._datastore.tile_ids,desc="tiles"):
        self.tile_id=tile_id
        self._load_raw_data()
        self._generate_registrations()
        self._apply_registration_to_bits()

register_one_tile(tile_id)

Helper function to register one tile.

Parameters:

Name Type Description Default
tile_id Union[int, str]

Tile id

required
Source code in src/merfish3danalysis/DataRegistration.py
def register_one_tile(self, tile_id: Union[int,str]):
    """Helper function to register one tile.

    Parameters
    ----------
    tile_id : Union[int,str]
        Tile id
    """

    self.tile_id = tile_id
    self._load_raw_data()
    self._generate_registrations()
    self._apply_registration_to_bits()

_no_op(*args, **kwargs)

Function to monkey patch print to suppress output.

Parameters:

Name Type Description Default
*args

Variable length argument list

()
**kwargs

Arbitrary keyword arguments

{}
Source code in src/merfish3danalysis/DataRegistration.py
def _no_op(*args, **kwargs):
    """Function to monkey patch print to suppress output.

    Parameters
    ----------
    *args
        Variable length argument list
    **kwargs
        Arbitrary keyword arguments
    """

    pass